Ihr möchtet mit Eurem Team teilnehmen? Ab drei Personen profitiert Ihr von unseren Gruppenrabatten! Direkt im Shop buchen!

Transparente Zeitreihenprognosen: Eine Einführung in Explainable AI (XAI) mit SHAP-Werten

In diesem Vortrag werden wir die Anwendung von Explainable AI (XAI) auf Zeitreihenprognosen diskutieren.

Unser Kunde, ein internationaler Chemiekonzern, betreibt eine interne Forecasting-Plattform. Dabei tauchen immer wieder Fragen zur Interpretation der verschiedenen Vorhersagen für denselben Zeitpunkt auf, die von verschiedenen Zeitreihen- oder ML-Methoden stammen können. Wir haben uns mit SHAP-Werten (Shapley Additive Explanations) auseinandergesetzt und dabei herausragende Ergebnisse erzielt.

SHAP-Werte sind ein Ansatz aus der kooperativen Spieltheorie, der es ermöglicht, individuelle Vorhersagen zu erklären. Sie quantifizieren die Größe und Richtung (positiv oder negativ) des Einflusses einer Funktion auf eine Vorhersage. Im Fall von Zeitreihenprognosen können SHAP-Werte dazu beitragen, die Unterschiede zwischen verschiedenen Modellen und Methoden zu verstehen. Insbesondere können sie uns dabei helfen, die treibenden Variablen hinter den unterschiedlichen Vorhersagen zu identifizieren.

Vorkenntnisse

Grundlegendes Verständnis des Vorgehens bei Machine Learing.

Lernziele

Lernziel ist ein Verständnis von Interpretation von Zeitreihenvorhersagen mittels SHAP Values zu erlangen, sowie deren Möglichkeiten und derzeitigen Beschränkungen zu verstehen.

Speaker

 

Markward Britsch
Markward Britsch ist Senior Data Scientist bei der HMS Analytical Software GmbH.

Gold-Sponsoren

InterSystems
INNOQ
PRODATO

Silber-Sponsoren

HMS Analytical Software
inovex

Bronze-Sponsor

andrena

data2day-Newsletter

Ihr möchtet über die data2day
auf dem Laufenden gehalten werden?

 

Anmelden